Article ID Journal Published Year Pages File Type
4586516 Journal of Algebra 2010 17 Pages PDF
Abstract

We give an explicit formula for the correspondence between simple Yetter–Drinfeld modules for certain finite-dimensional pointed Hopf algebras H and those for cocycle twists Hσ of H. This implies an equivalence between modules for their Drinfeld doubles. To illustrate our results, we consider the restricted two-parameter quantum groups ur,s(sln) under conditions on the parameters guaranteeing that ur,s(sln) is a Drinfeld double of its Borel subalgebra. We determine explicit correspondences between ur,s(sln)-modules for different values of r and s and provide examples where no such correspondence can exist. Our examples were obtained via the computer algebra system Singular::Plural.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory