Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4586587 | Journal of Algebra | 2011 | 9 Pages |
Abstract
Motivated by applications to abstract group theory, we study Lie powers of relation modules. The relation module associated to a free presentation G=F/N of a group G is the abelianization Nab=N/[N,N] of N, with G-action given by conjugation in F. The degree n Lie power is the homogeneous component of degree n in the free Lie ring on Nab (equivalently, it is the relevant quotient of the lower central series of N). We show that after reduction modulo a prime p this becomes a projective G-module, provided n>1 and n is not divisible by p.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory