Article ID Journal Published Year Pages File Type
4586741 Journal of Algebra 2010 17 Pages PDF
Abstract

We study δ-derivations – a construction simultaneously generalizing derivations and centroid. First, we compute δ-derivations of current Lie algebras and of modular Zassenhaus algebra. This enables us to provide examples of Lie algebras having -derivations which are divisors of zero, thus answering negatively a question of Filippov. Second, we note that δ-derivations allow, in some circumstances, to construct examples of non-semigroup gradings of Lie algebras, in addition to the recent ones discovered by Elduque. Third, we note that utilizing the construction of the Grassmann envelope allows to obtain results about δ-(super)derivations of Lie superalgebras from the corresponding results about Lie algebras. In this way, we prove that prime Lie superalgebras do not possess nontrivial δ-(super)derivations, generalizing the recent result of Kaygorodov.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory