Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4586765 | Journal of Algebra | 2010 | 13 Pages |
Abstract
A profinite group G is just infinite if every closed normal subgroup of G is of finite index. We prove that an infinite profinite group is just infinite if and only if, for every open subgroup H of G, there are only finitely many open normal subgroups of G not contained in H. This extends a result recently established by Barnea, Gavioli, Jaikin-Zapirain, Monti and Scoppola (2009) in [1], who proved the same characterisation in the case of pro-p groups. We also use this result to establish a number of features of the general structure of profinite groups with regard to the just infinite property.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory