Article ID Journal Published Year Pages File Type
4586765 Journal of Algebra 2010 13 Pages PDF
Abstract

A profinite group G is just infinite if every closed normal subgroup of G is of finite index. We prove that an infinite profinite group is just infinite if and only if, for every open subgroup H of G, there are only finitely many open normal subgroups of G not contained in H. This extends a result recently established by Barnea, Gavioli, Jaikin-Zapirain, Monti and Scoppola (2009) in [1], who proved the same characterisation in the case of pro-p groups. We also use this result to establish a number of features of the general structure of profinite groups with regard to the just infinite property.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory