Article ID Journal Published Year Pages File Type
4586897 Journal of Algebra 2010 27 Pages PDF
Abstract

Let H be a graded Hecke algebra with complex deformation parameters and Weyl group W. We show that the Hochschild, cyclic and periodic cyclic homologies of H are all independent of the parameters, and compute them explicitly. We use this to prove that, if the deformation parameters are real, the collection of irreducible tempered H-modules with real central character forms a Q-basis of the representation ring of W.Our method involves a new interpretation of the periodic cyclic homology of finite type algebras, in terms of the cohomology of a sheaf over the underlying complex affine variety.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory