Article ID Journal Published Year Pages File Type
4587013 Journal of Algebra 2010 7 Pages PDF
Abstract

We show that a weak-injective module over an integral domain need not be pure-injective (Theorem 2.3). Equivalently, a torsion-free Enochs-cotorsion module over an integral domain is not necessarily pure-injective (Corollary 2.4). This solves a well-known open problem in the negative.In addition, we establish a close relation between flat covers and weak-injective envelopes of a module (Theorem 3.1). This yields a method of constructing weak-injective envelopes from flat covers (and vice versa). Similar relation exists between the Enochs-cotorsion envelopes and the weak dimension ⩽1 covers of modules (Theorem 3.2).

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory