Article ID Journal Published Year Pages File Type
4587051 Journal of Algebra 2009 16 Pages PDF
Abstract

We tackle the problem of unraveling the algebraic structure of computations of effective Hamiltonians. This is an important subject in view of applications to chemistry, solid state physics or quantum field theory. We show, among other things, that the correct framework for these computations is provided by the hyperoctahedral group algebras. We define several structures on these algebras and give various applications. For example, we show that the adiabatic evolution operator (in the time-dependent interaction representation of an effective Hamiltonian) can be written naturally as a Picard-type series and has a natural exponential expansion.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory