Article ID Journal Published Year Pages File Type
4587231 Journal of Algebra 2010 6 Pages PDF
Abstract

Let G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every χ in Irr(G), we have χ(x)≠0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory