Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4587256 | Journal of Algebra | 2009 | 16 Pages |
Abstract
Fixing a field F of characteristic different from 2 and 3, we consider pairs (A,V) consisting of a degree 3 central simple F-algebra A and a 3-dimensional vector subspace V of the reduced trace zero elements of A which is totally isotropic for the trace quadratic form. Each such pair gives rise to a cubic form mapping an element of V to its cube; therefore we call it a cubic pair over F. Using the Okubo product in the case where F contains a primitive cube root of unity, and extending scalars otherwise, we give an explicit description of all isomorphism classes of such pairs over F. We deduce that a cubic form associated with an algebra in this manner determines the algebra up to (anti-)isomorphism.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory