Article ID Journal Published Year Pages File Type
4587285 Journal of Algebra 2009 8 Pages PDF
Abstract

Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character χ of G such that χ(g)=0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory