Article ID Journal Published Year Pages File Type
4587509 Journal of Algebra 2009 11 Pages PDF
Abstract

We study several families of semisimple Hopf algebras, arising as bismash products, which are constructed from finite groups with a certain specified factorization. First we associate a bismash product Hq of dimension q(q−1)(q+1) to each of the finite groups PGL2(q) and show that these Hq do not have the structure (as algebras) of group algebras (except when q=2,3). As a corollary, all Hopf algebras constructed from them by a comultiplication twist also have this property and are thus non-trivial. We also show that bismash products constructed from Frobenius groups do have the structure (as algebras) of group algebras.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory