Article ID Journal Published Year Pages File Type
4587885 Journal of Algebra 2008 10 Pages PDF
Abstract

We answer a recent conjecture of [N.P. Byott, G.G. Elder, A valuation criterion for normal bases in elementary abelian extensions, Bull. London Math. Soc. 39 (5) (2007) 705–708] in a more general setting. Precisely, let L/K be a finite abelian p-extension of local fields of characteristic p>0 that is totally ramified. Let b denote the largest ramification break in the lower numbering. We prove that any element x∈L whose valuation over L is equal to b modulo [L:K] generates a normal basis of L/K. The arguments will develop certain properties of ramification groups and jumps, as well as the algebraic structure of certain group algebras.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory