Article ID Journal Published Year Pages File Type
4588208 Journal of Algebra 2007 24 Pages PDF
Abstract

As is well known, in characteristic zero, the Lie algebra functor gives two category equivalences, one from the formal groups to the finite-dimensional Lie algebras, and the other from the unipotent algebraic affine groups to the finite-dimensional nilpotent Lie algebras. We prove these category equivalences in a quite generalized framework, proposed by Gurevich [D.I. Gurevich, The Yang–Baxter equation and generalization of formal Lie theory, Soviet Math. Dokl. 33 (1986) 758–762] and later by Takeuchi [M. Takeuchi, Survey of braided Hopf algebras, in: N. Andruskiewitsch, et al. (Eds.), New Trends in Hopf Algebra Theory, in: Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 301–324], of vector spaces with non-categorical symmetry. We remove the finiteness restriction from the objects, by using the terms of Hopf algebras and Lie coalgebras.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory