Article ID Journal Published Year Pages File Type
4588378 Journal of Algebra 2007 12 Pages PDF
Abstract

The classical Chase–Harrison–Rosenberg exact sequence relates the Picard and Brauer groups of a Galois extension S of a commutative ring R to the group cohomology of the Galois group. We associate to each action of a locally compact group G on a locally compact space X two groups which we call the equivariant Picard group and the equivariant Brauer group. We then prove an analogue of the Chase–Harrison–Rosenberg exact sequence in the which the roles of the Picard and Brauer groups are played by their equivariant analogues.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory