Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4588460 | Journal of Algebra | 2007 | 40 Pages |
In an earlier paper [D.S. Keeler, D. Rogalski, J.T. Stafford, Naïve noncommutative blowing up, Duke Math. J. 126 (2005) 491–546, MR 2120116], we defined and investigated the properties of the naïve blowup of an integral projective scheme X at a single closed point. In this paper we extend those results to the case when one naïvely blows up X at any suitably generic zero-dimensional subscheme Z. The resulting algebra A has a number of curious properties; for example it is noetherian but never strongly noetherian and the point modules are never parametrized by a projective scheme. This is despite the fact that the category of torsion modules in qgr-A is equivalent to the category of torsion coherent sheaves over X. These results are used in the companion paper [D. Rogalski, J.T. Stafford, A class of noncommutative projective surfaces, in press] to prove that a large class of noncommutative surfaces can be written as naïve blowups.