Article ID Journal Published Year Pages File Type
4588757 Journal of Algebra 2007 35 Pages PDF
Abstract

We describe rational knots with any of the possible combinations of the properties (a)chirality, (non-)positivity, (non-)fiberedness, and unknotting number one (or higher), and determine exactly their number for a given number of crossings in terms of their generating functions. We show in particular how Fibonacci numbers occur in the enumeration of fibered achiral and unknotting number one rational knots. Then we show how to enumerate rational knots of given crossing number depending on genus and/or signature. This allows to determine the asymptotical average value of these invariants among rational knots. We give also an application to the enumeration of lens spaces.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory