Article ID Journal Published Year Pages File Type
4588761 Journal of Algebra 2007 24 Pages PDF
Abstract

We generalize the usual relationship between irreducible Zariski closed subsets of the affine space, their defining ideals, coordinate rings, and function fields, to a non-commutative setting, where “varieties” carry a PGLn-action, regular and rational “functions” on them are matrix-valued, “coordinate rings” are prime polynomial identity algebras, and “function fields” are central simple algebras of degree n. In particular, a prime polynomial identity algebra of degree n is finitely generated if and only if it arises as the “coordinate ring” of a “variety” in this setting. For n=1 our definitions and results reduce to those of classical affine algebraic geometry.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory