Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4588761 | Journal of Algebra | 2007 | 24 Pages |
Abstract
We generalize the usual relationship between irreducible Zariski closed subsets of the affine space, their defining ideals, coordinate rings, and function fields, to a non-commutative setting, where “varieties” carry a PGLn-action, regular and rational “functions” on them are matrix-valued, “coordinate rings” are prime polynomial identity algebras, and “function fields” are central simple algebras of degree n. In particular, a prime polynomial identity algebra of degree n is finitely generated if and only if it arises as the “coordinate ring” of a “variety” in this setting. For n=1 our definitions and results reduce to those of classical affine algebraic geometry.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory