Article ID Journal Published Year Pages File Type
4588765 Journal of Algebra 2007 12 Pages PDF
Abstract

Deformation theory of associative algebras and in particular of Poisson algebras is reviewed. The role of an “almost contraction” leading to a canonical solution of the corresponding Maurer–Cartan equation is noted. This role is reminiscent of the Homotopical Perturbation Lemma, with the infinitesimal deformation cocycle as “initiator.”Applied to star-products, we show how Moyal's formula can be obtained using such an almost contraction and conjecture that the “merger operation” provides a canonical solution at least in the case of linear Poisson structures.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory