Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4588773 | Journal of Algebra | 2007 | 14 Pages |
Abstract
We give conditions under which an n-star module extends to an n-star module, or an n-tilting module, over a ring extension R of A. In case that R is a split extension of A by Q, we obtain that is a 1-tilting module (respectively, a 1-star module) if and only if is a 1-tilting module (respectively, a 1-star module) and generates both and (respectively, generates ), where is an injective cogenerator in the category of all left A-modules. These extend results in [I. Assem, N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998) 1547–1555; K.R. Fuller, *-Modules over ring extensions, Comm. Algebra 25 (1997) 2839–2860] by removing the restrictions on R and Q.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory