Article ID Journal Published Year Pages File Type
4590262 Journal of Functional Analysis 2014 51 Pages PDF
Abstract

We derive a dimensionally-reduced limit theory for an n-dimensional nonlinear elastic body that is slender along k dimensions. The starting point is to view an elastic body as an n  -dimensional Riemannian manifold together with a not necessarily isometric W1,2W1,2-immersion in n-dimensional Euclidean space. The equilibrium configuration is the immersion that minimizes the average discrepancy between the induced and intrinsic metrics. The dimensionally-reduced limit theory views the elastic body as a k  -dimensional Riemannian manifold along with an isometric W2,2W2,2-immersion in n-dimensional Euclidean space and linear data in the normal directions. The equilibrium configuration minimizes a functional depending on the average covariant derivatives of the linear data. The dimensionally-reduced limit is obtained using a Γ-convergence approach. The limit includes as particular cases plate, shell, and rod theories. It applies equally to “standard” elasticity and to “incompatible” elasticity, thus including as particular cases so-called non-Euclidean plate, shell, and rod theories.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,