Article ID Journal Published Year Pages File Type
4590457 Journal of Functional Analysis 2012 4 Pages PDF
Abstract

The Grothendieck compactness principle states that every norm compact subset of a Banach space is contained in the closed convex hull of a norm null sequence. In this article, an analogue of the Grothendieck compactness principle is considered when the norm topology of a Banach space is replaced by its weak topology. It is shown that every weakly compact subset of a Banach space is contained in the closed convex hull of a weakly null sequence if and only if the Banach space has the Schur property.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory