Article ID Journal Published Year Pages File Type
4590535 Journal of Functional Analysis 2014 22 Pages PDF
Abstract

Let (X,d,μ)(X,d,μ) be a complete metric measure space, with μ   a locally doubling measure, that supports a local weak L2L2-Poincaré inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on (X,d,μ)(X,d,μ). Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,