Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4590756 | Journal of Functional Analysis | 2012 | 35 Pages |
Abstract
Using an appropriate notion of locally convex Kasparov modules, we show how to induce isomorphisms under a large class of functors on the category of locally convex algebras; examples are obtained from spectral triples. Our considerations are based on the action of algebraic K-theory on these functors, and involve compatibility properties of the induction process with this action, and with Kasparov-type products. This is based on an appropriate interpretation of the Connes–Skandalis connection formalism. As an application, we prove Bott periodicity and a Thom isomorphism for algebras of Schwartz functions. As a special case, this applies to the theories kk for locally convex algebras considered by Cuntz.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory