Article ID Journal Published Year Pages File Type
4590864 Journal of Functional Analysis 2011 35 Pages PDF
Abstract

We study a family of stationary increment Gaussian processes, indexed by time. These processes are determined by certain measures σ (generalized spectral measures), and our focus here is on the case when the measure σ is a singular measure. We characterize the processes arising from σ when σ is in one of the classes of affine selfsimilar measures. Our analysis makes use of Kondratiev white noise spaces. With the use of a priori estimates and the Wick calculus, we extend and sharpen (see Theorem 7.1) earlier computations of Ito stochastic integration developed for the special case of stationary increment processes having absolutely continuous measures. We further obtain an associated Ito formula (see Theorem 8.1).

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory