Article ID Journal Published Year Pages File Type
4590868 Journal of Functional Analysis 2011 36 Pages PDF
Abstract

We consider the ground state of an atom in the framework of non-relativistic qed. We show that the ground state as well as the ground state energy are analytic functions of the coupling constant which couples to the vector potential, under the assumption that the atomic Hamiltonian has a non-degenerate ground state. Moreover, we show that the corresponding expansion coefficients are precisely the coefficients of the associated Raleigh–Schrödinger series. As a corollary we obtain that in a scaling limit where the ultraviolet cutoff is of the order of the Rydberg energy the ground state and the ground state energy have convergent power series expansions in the fine structure constant α, with α dependent coefficients which are finite for α⩾0.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory