Article ID Journal Published Year Pages File Type
4590874 Journal of Functional Analysis 2011 49 Pages PDF
Abstract

The solvability in Sobolev spaces is proved for divergence form complex-valued higher order parabolic systems in the whole space, on a half-space, and on a Reifenberg flat domain. The leading coefficients are assumed to be merely measurable in one spacial direction and have small mean oscillations in the orthogonal directions on each small cylinder. The directions in which the coefficients are only measurable vary depending on each cylinder. The corresponding elliptic problem is also considered.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory