Article ID Journal Published Year Pages File Type
4590956 Journal of Functional Analysis 2011 29 Pages PDF
Abstract

We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on “full subspaces” in the sense of Sjögren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory