Article ID Journal Published Year Pages File Type
4591568 Journal of Functional Analysis 2009 18 Pages PDF
Abstract

Let A⊂Rd, d⩾2, be a compact convex set and let be a probability measure on A equivalent to the restriction of Lebesgue measure. Let be a probability measure on equivalent to the restriction of Lebesgue measure. We prove that there exists a mapping T such that ν=μ○T−1 and T=φ⋅n, where is a continuous potential with convex sub-level sets and n is the Gauss map of the corresponding level sets of φ. Moreover, T is invertible and essentially unique. Our proof employs the optimal transportation techniques. We show that in the case of smooth φ the level sets of φ are governed by the Gauss curvature flow , where K is the Gauss curvature. As a by-product one can reprove the existence of weak solutions to the classical Gauss curvature flow starting from a convex hypersurface.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory