Article ID Journal Published Year Pages File Type
4591650 Journal of Functional Analysis 2008 24 Pages PDF
Abstract

We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces. To do so, we develop a non-linear and non-local version of the ground state representation, which even yields a remainder term. From the sharp Hardy inequality we deduce the sharp constant in a Sobolev embedding which is optimal in the Lorentz scale. In the appendix, we characterize the cases of equality in the rearrangement inequality in fractional Sobolev spaces.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory