Article ID Journal Published Year Pages File Type
4591766 Journal of Functional Analysis 2011 50 Pages PDF
Abstract

We prove a large deviation principle result for solutions of abstract stochastic evolution equations perturbed by small Lévy noise. We use general large deviations theorems of Varadhan and Bryc coupled with the techniques of Feng and Kurtz (2006) [15], viscosity solutions of integro-partial differential equations in Hilbert spaces, and deterministic optimal control methods. The Laplace limit is identified as a viscosity solution of a Hamilton–Jacobi–Bellman equation of an associated control problem. We also establish exponential moment estimates for solutions of stochastic evolution equations driven by Lévy noise. General results are applied to stochastic hyperbolic equations perturbed by subordinated Wiener process.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory