Article ID Journal Published Year Pages File Type
4591823 Journal of Functional Analysis 2011 55 Pages PDF
Abstract

We study some basic analytical problems for nonlinear Dirac equations involving critical Sobolev exponents on compact spin manifolds. Their solutions are obtained as critical points of certain strongly indefinite functionals defined on H1/2-spinors with critical growth. We prove the existence of a non-trivial solution for the Brezis–Nirenberg type problem when the dimension m of the manifold is larger than 3. We also prove a global compactness result for the associated Palais–Smale sequences and the regularity of -weak solutions.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory