Article ID Journal Published Year Pages File Type
4591891 Journal of Functional Analysis 2008 59 Pages PDF
Abstract

A Feynman–Kac-type formula for a Lévy and an infinite-dimensional Gaussian random process associated with a quantized radiation field is derived. In particular, a functional integral representation of e−tHPF generated by the Pauli–Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics is constructed. When no external potential is applied HPF turns translation-invariant and it is decomposed as a direct integral . The functional integral representation of e−tHPF(P) is also given. Although all these Hamiltonians include spin, nevertheless the kernels obtained for the path measures are scalar rather than matrix expressions. As an application of the functional integral representations energy comparison inequalities are derived.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory