Article ID Journal Published Year Pages File Type
4591925 Journal of Functional Analysis 2010 41 Pages PDF
Abstract

We formulate a general theory of positions for subspaces of a Banach space: we define equivalent and isomorphic positions, study the automorphy index a(Y,X) that measures how many non-equivalent positions Y admits in X, and obtain estimates of a(Y,X) for X a classical Banach space such as ℓp,Lp,L1,C(ωω) or C[0,1]. Then, we study different aspects of the automorphic space problem posed by Lindenstrauss and Rosenthal; namely, does there exist a separable automorphic space different from c0 or ℓ2? Recall that a Banach space X is said to be automorphic if every subspace Y admits only one position in X; i.e., a(Y,X)=1 for every subspace Y of X. We study the notion of extensible space and uniformly finitely extensible space (UFO), which are relevant since every automorphic space is extensible and every extensible space is UFO. We obtain a dichotomy theorem: Every UFO must be either an L∞-space or a weak type 2 near-Hilbert space with the Maurey projection property. We show that a Banach space all of whose subspaces are UFO (called hereditarily UFO spaces) must be asymptotically Hilbertian; while a Banach space for which both X and X∗ are UFO must be weak Hilbert. We then refine the dichotomy theorem for Banach spaces with some additional structure. In particular, we show that an UFO with unconditional basis must be either c0 or a superreflexive weak type 2 space; that a hereditarily UFO Köthe function space must be Hilbert; and that a rearrangement invariant space UFO must be either L∞ or a superreflexive type 2 Banach lattice.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory