Article ID Journal Published Year Pages File Type
4592157 Journal of Functional Analysis 2010 37 Pages PDF
Abstract

We deal with convolution semigroups (not necessarily symmetric) in Lp(RN) and provide a general perturbation theory of their generators by indefinite singular potentials. Such semigroups arise in the theory of Lévy processes and cover many examples such as Gaussian semigroups, α-stable semigroups, relativistic Schrödinger semigroups, etc. We give new generation theorems and Feynman–Kac formulas. In particular, by using weak compactness methods in L1, we enlarge the extended Kato class potentials used in the theory of Markov processes. In L2 setting, Dirichlet form-perturbation theory is finely related to L1-theory and the extended Kato class measures is also enlarged. Finally, various perturbation problems for subordinate semigroups are considered.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory