Article ID Journal Published Year Pages File Type
4592331 Journal of Functional Analysis 2007 36 Pages PDF
Abstract

We introduce and study a new type of convolution of probability measures, denoted and called the s-free additive convolution, which is defined by the subordination functions associated with the free additive convolution. We derive an alternating decomposition of for compactly supported μ and ν, using another convolution called orthogonal additive convolution. This decomposition leads to two types of ‘complete’ alternating decompositions of the free additive convolution μ⊞ν. More importantly, we develop an operatorial approach to the subordination property and introduce the associated notion of s-free independence. Moreover, we establish relations between convolutions associated with the main notions of noncommutative independence (free, monotone and boolean). Finally, our result leads to natural decompositions of the free product of rooted graphs.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory