Article ID Journal Published Year Pages File Type
4592343 Journal of Functional Analysis 2009 21 Pages PDF
Abstract

We show that the open unit ball of the space of operators from a finite-dimensional Hilbert space into a separable Hilbert space (we call it “operator ball”) has a restricted form of normal structure if we endow it with a hyperbolic metric (which is an analogue of the standard hyperbolic metric on the unit disc in the complex plane). We use this result to get a fixed point theorem for groups of biholomorphic automorphisms of the operator ball. The fixed point theorem is used to show that a bounded representation in a separable Hilbert space which has an invariant indefinite quadratic form with finitely many negative squares is unitarizable (equivalent to a unitary representation). We apply this result to find dual pairs of invariant subspaces in Pontryagin spaces. In Appendix A we present results of Itai Shafrir about hyperbolic metrics on the operator ball.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory