Article ID Journal Published Year Pages File Type
4592647 Journal of Functional Analysis 2008 34 Pages PDF
Abstract

It is known that the couple formed by the two-dimensional Brownian motion and its Lévy area leads to the heat kernel on the Heisenberg group, which is one of the simplest sub-Riemannian space. The associated diffusion operator is hypoelliptic but not elliptic, which makes difficult the derivation of functional inequalities for the heat kernel. However, Driver and Melcher and more recently H.-Q. Li have obtained useful gradient bounds for the heat kernel on the Heisenberg group. We provide in this paper simple proofs of these bounds, and explore their consequences in terms of functional inequalities, including Cheeger and Bobkov type isoperimetric inequalities for the heat kernel.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory