Article ID Journal Published Year Pages File Type
4592737 Journal of Functional Analysis 2008 31 Pages PDF
Abstract

Let BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite-dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection such that P(BY)⊂A. The main results of the paper: (1) Each minimal-volume sufficient enlargement is linearly equivalent to a zonotope spanned by multiples of columns of a totally unimodular matrix. (2) If a finite-dimensional normed linear space has a minimal-volume sufficient enlargement which is not a parallelepiped, then it contains a two-dimensional subspace whose unit ball is linearly equivalent to a regular hexagon.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory