Article ID Journal Published Year Pages File Type
4592761 Journal of Functional Analysis 2008 8 Pages PDF
Abstract

We show the existence of a compact metric space K such that whenever K embeds isometrically into a Banach space Y, then any separable Banach space is linearly isometric to a subspace of Y. We also address the following related question: if a Banach space Y contains an isometric copy of the unit ball or of some special compact subset of a separable Banach space X, does it necessarily contain a subspace isometric to X? We answer positively this question when X is a polyhedral finite-dimensional space, c0 or ℓ1.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory