Article ID Journal Published Year Pages File Type
4592830 Journal of Functional Analysis 2007 53 Pages PDF
Abstract

In this paper, we establish asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths under the condition that the phase function has finitely many non-degenerate minima. Our main tool is the Banach space-valued rough path theory of T. Lyons. We use a large deviation principle and the stochastic Taylor expansion with respect to the topology of the space of geometric rough paths. This is a continuation of a series of papers by Inahama [Y. Inahama, Laplace's method for the laws of heat processes on loop spaces, J. Funct. Anal. 232 (2006) 148–194] and by Inahama and Kawabi [Y. Inahama, H. Kawabi, Large deviations for heat kernel measures on loop spaces via rough paths, J. London Math. Soc. 73 (3) (2006) 797–816], [Y. Inahama, H. Kawabi, On asymptotics of certain Banach space-valued Itô functionals of Brownian rough paths, in: Proceedings of the Abel Symposium 2005, Stochastic Analysis and Applications, A Symposium in Honor of Kiyosi Itô, Springer, Berlin, in press. Available at: http://www.abelprisen.no/no/abelprisen/deltagere_2005.html].

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory