Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4592870 | Journal of Functional Analysis | 2007 | 19 Pages |
Abstract
In this paper we consider eigenvalues of the Dirichlet biharmonic operator on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of the Dirichlet biharmonic operator on compact domains in a Euclidean space or a minimal submanifold of it and a unit sphere. We obtain universal bounds on the (k+1)th eigenvalue on such objects in terms of the first k eigenvalues independent of the domains. The estimate for the (k+1)th eigenvalue of bounded domains in a Euclidean space improves an important inequality obtained recently by Cheng and Yang.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory