Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4598509 | Linear Algebra and its Applications | 2016 | 20 Pages |
Abstract
We consider the discrete right definite Sturm–Liouville problems−Δ(p(t−1)Δy(t−1))+q(t)y(t)=λm(t)y(t),t∈[1,T]Z,(a0λ+b0)y(0)=(c0λ+d0)Δy(0),(a1λ+b1)y(T+1)=(c1λ+d1)∇y(T+1), where [1,T]Z={1,2,⋯,T}[1,T]Z={1,2,⋯,T}, m(t)>0m(t)>0 for t∈[1,T]Zt∈[1,T]Z, (−1)iδi≤0(−1)iδi≤0, where δi=aidi−biciδi=aidi−bici for i=0,1i=0,1. We obtain the existence of the eigenvalues, the sign-changing times of the eigenfunctions and the interlacing results of the eigenvalues of the above problem, the Dirichlet problem and the Neumann problem.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Chenghua Gao, Ruyun Ma,