Article ID Journal Published Year Pages File Type
4598719 Linear Algebra and its Applications 2016 41 Pages PDF
Abstract

We study evolution algebras of arbitrary dimension. We analyze in deep the notions of evolution subalgebras, ideals and non-degeneracy and describe the ideals generated by one element and characterize the simple evolution algebras. We also prove the existence and unicity of a direct sum decomposition into irreducible components for every non-degenerate evolution algebra. When the algebra is degenerate, the uniqueness cannot be assured.The graph associated to an evolution algebra (relative to a natural basis) will play a fundamental role to describe the structure of the algebra. Concretely, a non-degenerate evolution algebra is irreducible if and only if the graph is connected. Moreover, when the evolution algebra is finite-dimensional, we give a process (called the fragmentation process) to decompose the algebra into irreducible components.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,