Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4599255 | Linear Algebra and its Applications | 2015 | 38 Pages |
Abstract
A new family of asymmetric matrices of Walsh–Hadamard type is introduced. We study their properties and, in particular, compute their determinants and discuss their eigenvalues. The invertibility of these matrices implies that certain character formulas are invertible, yielding expressions for the cardinalities of sets of combinatorial objects with prescribed descent sets in terms of character values of the symmetric group.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Ron M. Adin, Yuval Roichman,