Article ID Journal Published Year Pages File Type
4599799 Linear Algebra and its Applications 2014 31 Pages PDF
Abstract

The reconstruction of three-dimensional sparse volume functions from few tomographic projections constitutes a challenging problem in image reconstruction and turns out to be a particular problem instance of compressive sensing. The tomographic measurement matrix encodes the incidence relation of the imaging process, and therefore is not subject to design up to small perturbations of non-zero entries. We present an average case analysis of the recovery properties and a corresponding tail bound to establish weak thresholds in excellent agreement with numerical experiments. Our results improve the state-of-the-art of tomographic imaging in experimental fluid dynamics.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,