Article ID Journal Published Year Pages File Type
4599883 Linear Algebra and its Applications 2013 6 Pages PDF
Abstract

Motivated with a problem in spectroscopy, Sloane and Harwit conjectured in 1976 what is the minimal Frobenius norm of the inverse of a matrix having all entries from the interval [0,1][0,1]. In 1987, Cheng proved their conjecture in the case of odd dimensions, while for even dimensions he obtained a slightly weaker lower bound for the norm. His proof is based on the Kiefer–Wolfowitz equivalence theorem from the approximate theory of optimal design. In this note we give a short and simple proof of his result.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,