Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4599917 | Linear Algebra and its Applications | 2013 | 13 Pages |
Abstract
It is known that two Banach space operators that are Schur coupled are also equivalent after extension, or equivalently, matricially coupled. The converse implication, that operators which are equivalent after extension or matricially coupled are also Schur coupled, was only known for Fredholm Hilbert space operators and Fredholm Banach space operators with index 0. We prove that this implication also holds for Hilbert space operators with closed range, generalizing the result for Fredholm operators, and Banach space operators that can be approximated in operator norm by invertible operators. The combination of these two results enables us to prove that the implication holds for all operators on separable Hilbert spaces.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory