Article ID Journal Published Year Pages File Type
4599924 Linear Algebra and its Applications 2013 26 Pages PDF
Abstract

We introduce a class of Jacobi operators with discrete spectra which is characterized by a simple convergence condition. With any operator J from this class we associate a characteristic function as an analytic function on a suitable domain, and show that its zero set actually coincides with the set of eigenvalues of J in that domain. As an application we construct several examples of Jacobi matrices for which the characteristic function can be expressed in terms of special functions. In more detail we study the example where the diagonal sequence of J is linear while the neighboring parallels to the diagonal are constant.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory