Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4600043 | Linear Algebra and its Applications | 2013 | 5 Pages |
Abstract
We establish some operator versions of Bellman’s inequality. In particular, we prove that if Φ:B(H)→B(K)Φ:B(H)→B(K) is a unital positive linear map, A,B∈B(H)A,B∈B(H) are contractions, p>1p>1 and 0⩽λ⩽10⩽λ⩽1, then(Φ(IH-A∇λB))1/p⩾Φ((IH-A)1/p∇λ(IH-B)1/p).Φ(IH-A∇λB)1/p⩾Φ(IH-A)1/p∇λ(IH-B)1/p.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
A. Morassaei, F. Mirzapour, M.S. Moslehian,