Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4600160 | Linear Algebra and its Applications | 2012 | 9 Pages |
Abstract
Consider the Laplacian and signless Laplacian spectrum of a graph G of order n, with k pairwise co-neighbor vertices. We prove that the number of shared neighbors is a Laplacian and a signless Laplacian eigenvalue of G with multiplicity at least k − 1. Additionally, considering a connected graph Gk with a vertex set defined by the k pairwise co-neighbor vertices of G, the Laplacian spectrum of Gk, obtained from G adding the edges of Gk, includes l+β for each nonzero Laplacian eigenvalue β of Gk. The Laplacian spectrum of G overlaps the Laplacian spectrum of Gk in at least n − k + 1 places.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory